skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lemaux, Brian_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We examine the quiescent fractions of massive galaxies in sixz≳ 3 spectroscopically confirmed protoclusters in the COSMOS field, one of which is newly confirmed and presented here. We report the spectroscopic confirmation of MAGAZ3NE J100143+023021 at z = 3.122 0.004 + 0.007 by the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) survey. MAGAZ3NE J100143+023021 contains a total of 79 protocluster members (28 spectroscopic and 51 photometric). Three spectroscopically confirmed members are star-forming ultramassive galaxies (UMGs; log ( M / M ) > 11), the most massive of which has log ( M / M ) = 11.15 0.06 + 0.05 . Combining Keck/MOSFIRE spectroscopy and the COSMOS2020 photometric catalog, we use a weighted Gaussian kernel density estimator to map the protocluster and measure its total mass 2.25 0.65 + 1.55 × 10 14 M in the dense “core” region. For each of the six COSMOS protoclusters, we compare the quiescent fraction to the status of the central UMG as star-forming or quiescent. We observe that galaxies in these protoclusters appear to obey galactic conformity: Elevated quiescent fractions are found in protoclusters withUVJ-quiescent UMGs and low quiescent fractions are found in protoclusters containingUVJstar-frming UMGs. This correlation of star formation/quiescence in UMGs and the massive galaxies nearby in these protoclusters is the first evidence for the existence of galactic conformity atz> 3. Despite disagreements over mechanisms behind conformity at low redshifts, its presence at these early cosmic times would provide strong constraints on the physics proposed to drive galactic conformity. 
    more » « less
  2. Abstract We present an analysis of the number density of galaxies as a function of stellar mass (i.e., the stellar mass function (SMF)) in the COSMOS field atz∼ 3.3, making a comparison between the SMF in overdense environments and the SMF in the coeval field. In particular, this region contains the Elentári proto-supercluster, a system of six extended overdensities spanning ∼70 cMpc on a side. A clear difference is seen in the high-mass slope of these SMFs, with overdense regions showing an increase in the ratio of high-mass galaxies to low-mass galaxies relative to the field, indicating a more rapid buildup of stellar mass in overdense environments. This result qualitatively agrees with analyses of clusters atz∼ 1, though the differences between protocluster and field SMFs atz∼ 3.3 are smaller. While this is consistent with overdensities enhancing the evolution of their member galaxies, potentially through increased merger rates, whether this enhancement begins in protocluster environments or even earlier in group environments is still unclear. Though the measured fractions of quiescent galaxies between the field and overdense environments do not vary significantly, implying that this stellar mass enhancement is ongoing and any starbursts triggered by merger activity have not yet quenched, we note that spectroscopic observations are biased toward star-forming populations, particularly for low-mass galaxies. If mergers are indeed responsible, high-resolution imaging of Elentári and similar structures at these early epochs should then reveal increased merger rates relative to the field. Larger samples of well-characterized overdensities are necessary to draw broader conclusions in these areas. 
    more » « less
  3. ABSTRACT Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times. 
    more » « less